

Energy flexibility services from buildings by using adaptive comfort strategies

NEED FOR ENERGY FLEXIBILITY

- The human society is facing the difficult challenge of the energy transition
- The increase of renewables in the energy market leads to high variability of production: unbalance in the energy grid and market
- This makes **flexibility** in both supply and demand of electricity **crucial for balancing purposes**
- Providing energy flexibility as a service to balance the electricity grid offers interesting business opportunities

PROVIDE ENERGY FLEXIBILITY

- In the built environment the use of flexible assets as batteries or EVs, coupled with PV and HP can provide flexibility to the grid
- This flexibility framework can be expensive and not fully exploited (e.g. curtailment)
- Why can't we provide flexibility from buildings? Can buildings join the energy markets to provide flexibility?
- The thermal mass of the building might be used as a buffer to store and to deliver energy at the right time.
 Only boundary? Users' acceptance

ENERGY FLEXIBILITY BY THERMAL MASS

- The NWO iCare project (2011-2019) showed that adaptive comfort control strategies can be used to provide flexibility in building energy demand without compromising thermal comfort
- The amount of flexibility depends on several building characteristics, e.g. window-wall-ratio, Rc-values and the building's thermal mass. The thermal mass is fundamental. Zero additional cost and full availability!
- It is possible to store/conserve heat and cold, and use during **Demand Response** events

ADAPTIVE OGMAN BIREOROFIOE STRATEGY °C €/MWh ²⁴23 90 23 _____ 80 22 70 21 60 50 PERATI 8 ₩ 17 30 16^{16} 20 151510 REFERENCE 1414 1 12 23 HOUHROOR OFFISALYDAY

ENERGY FLEXIBILITY FOR BUILDINGS BY ADAPTIVE COMFORT STRATEGIES

TR@EF ... TKI URBAN ENE

- Evaluation of thermal comfort and flexibility benefits due to flexible operations in 4 office buildings in the Netherlands
- Investigation on building installation systems operations management to get flexibility

ENERGY FLEXIBILITY FOR BUILDINGS BY ADAPTIVE COMFORT STRATEGIES

CLUSTERING OF COMFORT DATA IN STRATEGY AND REFERENCE DAYS

STATISTICAL ANALYSIS, evaluating if: No statistically significant difference between reference and strategy days

KRUSKAL-WALLIS TEST	P-VALUE
ACCEPTABILITY – REFERENCE/STRATEGY	0.55 > (0.05)
SENSATION – REFERENCE/STRATEGY	0.19 > (0.05)

THE EXPERIMENT SHOWS THAT **THERMAL COMFORT IS NOT JEOPARDIZED** SO **IT IS SAFE TO USE THESE CONTROL STRATEGIES** TO CREATE ENERGY FLEXIBILITY

ENERGY FLEXIBILITY FOR BUILDINGS BY ADAPTIVE COMFORT STRATEGIES

• Imagine to get these insights for any kind of building... for different market, assets, and financial boundaries

ENERGY FLEXIBILITY FOR BUILDINGS BY ADAPTIVE COMFORT STRATEGIES

- Developing a tool that can predict the available energy flexibility potential that specific Dutch buildings can provide through their thermal mass and by using adaptive comfort control strategies
- The tool compares the predicted energy flexibility to other available energy flexibility sources in the building (battery, heat pumps, EV, PV)
- The tool helps to identify which building design show the most potential to be used as an energy flexibility source

TOOL MOCKUP AND STAKEHOLDER ENGAGEMENT

TOOL MOCKUP AND STAKEHOLDER ENGAGEMENT

CONCLUSIONS

- Demonstrated the available flexibility while maintaining the thermal comfort for users in 4 different office buildings in the Netherlands
- The use of the thermal mass as a flexibility source can be a cheap and feasible way to manage the energy in the built environment
- The tool (in development) will give financial, energyperformance, retrofit, and sustainability insights to get energy flexibility for building managers, energy service companies and energy aggregators

Project duration: 07/2021 – 07/2023

POLL-QUESTION: Within how many years do you think that the use of Smart Control Strategies for office heating will be business-as-usual for most office buildings? (post your arguments in the chat!)

- 0-1 year
- 1-2 years
- 2-5 years
- 5+ years.

SMART ENERGY COMMUNITY

VOOR WONINGEN EN BEDRIJFSGEBOUWEN

> Q&A <u>u.peluso@tue.nl</u> <u>umberto.peluso@bam.com</u> P.hoes@tue.nl

The right energy, at the right time!