#	Vraag	Antwoord
1	Is the bore hole technologie suitable foar	Yes, these systems are suitable for small local DH
	small scale heat distribution systems	system very well. Usually efficiency and economics
		improve for larger systems though.
2	Is there a temperature limitation in the	Normally, it is 25 or 30 oC. However, there are ATES
	Netherlands	project running at 90 oC. So, we expect that this is
		possible after a good judgement of the effects.
3	how do you insulated the side ground to	The storage is not insulated to the surrounding
	avoid dispersion in the ground?	ground. The ground itself is the storage medium.
		Luckily heat moves very slowly though in soil.
4	how do you manage if any pipes in the	Usually, a couple of boreholes are connected to one
	ground has a leackage?	collector. After installation, they will be tested. If it
		happen during operation, the collector will be closed
		to prevent any further leakage.
5	What is the motivation for the hydronic	Connecting multiple BHEs in series increases the
	configuration (e.g series/parallel) of the	temperature difference between inlet and outlet
	different boreholes? What is taken into	which can be beneficial for system integration. It is a
	account and why? How does it relate to	tradeoff between higher storage temperatures and a
	the charging/discharging use case?	higher delta 1 of the fluid. It should be optimized
		during design stage. Furthermore it can result in a
		natural temperature zonong of the inner and outer
		BHES and decrease losses. The BHES in the center are
		the inlet during charging getting the highest
		temperatures. FOr discharging the flow direction is
6	What do you moon by higher	Fach borobala boat exchanger bas a tennerature
0	tomporature difference (between the	delta between fluid inlet and culet. This is often quite
	whole system or single PHE inlet and	cmall (2.5.K) If mulitale BHEs are connected in series
	outlet)? And how is this a result of the	ther overall temperature delta between storage inlet
	series connection?	and outlet increases
7	Over a storage time of 6 months (e.g. in	Typically the efficency is around 65-85% depending
ľ	Norway) how much heat is lost to the	on the storage design and to what low temperatures
	sourrounding soil? (in percent)	the storage is discharged.
8	Is ground heaving a concern when	BTES is often installed below a building, or even also
ľ	installing BTES, especially higher	in the pilars for the foundation. The closed loops are
	temperature systems? I.e. could you	often 100-150 m while foundation is 10. 20 or 30 m.
	install the borehole field beneath a	So, yes, you can combine it.
	building or would it disturb the	
	foundation?	
9	What is the maximum	BTES operation temperatures are limited by
	charging/dischrging temperature we an	regulation to protect groundwater and by materials.
1	go with HT-TES ?	Standard materials for shallow geothermal allow
1		temperatures up to 80-85 °C. For medium-deep
		systems other materials are used which allow up to
		95 °C. The regulatory limitation depends on the local
		hydrogeological situation and laws.
1		

10	What is the minimum number of	1 :-) Usually these systems start at about 40-50 BHEs"
	heat?	
11	Is de stroming in de wisselaars laminair of turbulent?	It should be turblent
12	Do vou use U tubes?	Yes!
13	What is de liquid in the pipes of the	It can be water if operation temperatures stay above
	boreholes?	5°C. If the storage should be discharged to lower
		temperatures a water-glycol mixture has to be used
		as for conventional ground coupled heat pumps.
14	Wat is een Non-dispatchable heatsource	Live beantwoord, hernieuwbare warmtebronnen
	(Vattenfall)?	zoals zonnewarmte of zonne-/windenergie (via
		power-2-heat)
14	What is a non-dispatchable neatsource	Answered live, renewable heat sources like solar neat
15	(Vattentall)?	or solar/wind energy (via power-z-neat)
12	HOW IS BIEH different from a typical	Many porenoie systems are GSRP systems, which
	geothermal energy source:	free the subsurface. In the concent RTES, you
		manage the best and also add best during the
		illidinge the neat and also add neat during the
		winter period. So, it will be used as a storage
		technlogy and not only as a heat harvast method
		Generally horeholes are also drilled much closer
		together than with geothermal systems
16	Additional information about why	Thank you Geoffrey!
	brædstrup was less used than designed:	
	the buffer tanks (TTES) were	
	limplemented for the full-scale version of	
	the BTES, 10 times larger, which was	
	planned for an extension of the solar	
	collector field. Therefore the TTES were	
	big enough to store most of the solar	
	heat, and the seasonal use of the BTES	
	became much less important, eventually	
	leaving the BTES only to be used for the	
	excess heat and as a geothermal heat	
	source for heat pumps	
17	If you would want to charge it with DVT	Vacl
11	installations, and heatnumns from	resi
	homes in a neighbourhood, would that	
	Mork?	
18	Where are the limits in temperature up	I do not know about the existing literature, but the
	to that you can heat up the underground	operational systems are operated with temperatures
	hefore you start getting mineralogical	up to 85 °C for some years now.
	reactions that might cause damage to	
	the borehole or even to the surface. Has	
	this been studied in different rock types?	