#	Vraag	Antwoord
1	Will there be a overall compairison	Hi! This was covered during the first webinar. Check out the
	between the 4 types of energy	recordings of the first and second webinars here:
	storage solutions during this	https://topsectorenergie.nl/nl/kennisbank/webinarreeks-
	series?	warmteopslag/ Also, the fact sheets that Bas talked about that are
		still to be published can also be used for an overall comparison.
2	How much water do you need for a	Morten's slides indicate the cubic metres (m3) you need per MWh
	MWh. Is that related to the size?	for a few projects. Apart from volume, temperature is also
		important.
3	are te solar collectors PT or PVT ?	The solar collectors in theese projects are purely thermal collectors.
		It could also be used with pvt
4	Is PTES interesting for the	We expect that this couldn't be applied on all places. In each
	Netherlands, with its relatively high	project, you should check how large a heat storage system should
	groundwater levels?	be and what kind of options you have and which could be applied.
		And also what the function of the heat storage is. How long does
_		heat need to be stored, for example.
5	The system in Tibet looks quite	Yes, Morten said it is delivered to the village. Apparently covering
	large, was it connected to the small	90% of their yearly heat demand. The other 10% is covered by
	village we saw on the pictures?	electric boilers.
	where is the heat delivered to?	
6	why is the groundwaterleyel in the	Answered live
Ū	netherlands an issue? is it heatloss?	
7	What is the most efficient	In general - the deeper the better. But there is always a limit to the
	Diameter to depth according to	depth - either geotechnical og geometrical
	heat losses?	
8	What is the purpose of the middle	The middle diffuser is mainly used when attaching a heat pump to
	diffuser? top and bottom are clear	the system. But it also helps to get rid of mixed temperature water
		from the boundary layer between hot and cold.
9	Have wind energy and big heat	Yes. The danish district heating plants are very actively taking part in
	pumps been used to provide heat	the electricity market by using HP and electrical boilers. The more
	for these storage systems?	storage capacity they have available the more flexible they can act
		in the electricity market and earn money (produce cheap heat) on
		that.
10	Is there a min. required depth of	The storages I have experience has a water depth of 10 m and
	the PTES to ensure temperature	upvards. I can not tell exactly the minimum required depth to
	stratification?	ensure stratification
11	What is the heat loss (approx.) per	Morten gave an example of a PTES in Dronninglund that has a yearly
	24 nrs (of course depending on the	neat loss of around 10%. Obviously it will depend on the
	aimensions/volume) of the PIES?	temperature of the neat storage and the temperature outside how
	iviaybe you can give some	much neat loss there is on a daily basis.
	examples of existing PIES systems.	

-		
12	What are reasons for choosing	It depends from site to site and from the amount of heat, which
	PTES instead of HT-ATES when	needs to be stored. For HT-ATES you need proper aquifers which are
	implementing HT energystorage in	between strong clay layers. If they are not present, you can check if
	the NL?	PTES will be an option. So from case to case, you have to judge what
		is the bst solution from a technical, legal and financial perspective.
		An interesting aspect that Morten mentioned was the possible
		function of PTES as a day or week-buffer. So not as seasobnal
		storage.
13	How does the size of the pit	A bigger storage will have relatively lower heat loss because the
	storage and the temerature of the	surface area related to the volume is smaller. The temperature of
	water relate to the round trip	the water has a large impact on the round trip efficiency. The
	efficiency?	example from Dronninglund cool down the water to 5-10°C during
		the winter by a heat pump. This is one of the reasons for the high
		efficiency. A lot of the heat you loose to the surrounding soil is
		regained during the winter because it ""flows"" back into the cold
		water inside the storage"
14	How do you select the optimal	If we have the possibility we stay above the ground water table. In
	depth/height of the PTES? What	Dronninglund the bottom of the storage is 1 m above the ground
	considerations regarding ground	water table. If you can not avoid the ground water you need to
	water table to atke account of?	evaluate the flow velocity of the ground water and evaluate the
		heat loss. Special precautions can be taken against this. (insulation
		of sides and bottom of storage or sheet piles around the storage to
		reduce ground water flow)
15	What is the benefit of using this	Its mainly a cost factor. PTES is generally 5 times cheaper than steel
	kind of tank instead of usual tanks	tanks depending of the size.
	made from steel and other	
	coupounds with good gesture of	
	temperature and pressure	
16	Is EPDM not an option as a variable-	EPDM could be an option. The main drawback to my knowledge is
	temperature resiliant long life	that you can not weld EPDM. That is right, EPDM is not weldable
	lining material? (to expensive?)	and very soft so it is not possible to use as sealing barrier in a Pit.
		Therefore the developement in PP-HTR and PE-HTR going forward."
17	What is the effect of storage on the	The storage will be have to paid back and therefore provide an
	cost of heat?	immediate cost to the heat. But it also enables all the other heat
		sources to operate more efficiently and at their best times (lowest
		heat cost). So the overall heat price goes down. The magnitude is
		case specific.
18	What potential do you see in PTES	Jonas I. S.: "We see that it would be possible and a great idea to use
	combined with CHP? Because in NL	a storage together with a CHP plant. It would enable the operator to
	we will need to increase	ramp up the production of electricity when prices are high and
	decentralized electricity production	storing the excess heat in the storage. It would also enable the CHP
	in the winter	plant to operate with a very constant load and the excess
		production of heat in the night or during the middle of the day could
1		be stored in the storage and used for the peak demands in the
1		morning and evening."

19	What is the status on modelling	Jonas I. S.: "The modelling of a storage is always a complex task.
	these fairly complicated systems?	There exist several commercial softwares that does this which can
	Did you use digital twin to fine tune	be used in feasibility studies to find the correct size of it. When it
	the systems?	comes to operation there is also software programs that assists the
		operators in real time how to operate the storage. EMD and
		Danfoss has such softwares. Another point is that when a heat
		pump is connected to the storage the modelling becomes a lot more
		complicated and therefore it is often useful to get inputs based on
		experience and existing cases. Companies like Bobach Solution has
		this knowledge."
20	Thank you very much for an	Thank you for attending.
	insightful presentation, very	
	informative.	
21	Is electricity cheap in Denmark?	Jonas I. S.: "Electricity is sometimes cheap. It varies a lot but we
	Surprised to see electric boilers	usually have cheaper electricity during winter (More wind) and
	rather than heat pumps.	during summer (More sun). However, the main advantages of
		electric boilers compared to heat pumps are their quick response
		(They can quickly turn on and produce heat which is needed),
		maintenance is cheap and low, the CAPEX is significantly lower and
		we have seen prices around 50 - 70,000 EUR/MW for electric
		boilers."
22	how do you ensure that	Jonas I. S.: "The diffusers are designed to avoid turbulence so if a
	temperature stratification remains	larger charge/discharge capacity is needed the diffusers are larger.
	intact in the pit, and avoid	The main parameter is the velocity of the water exiting the diffuser.
	convection, by the input and	We need to keep that low and therefore, if the charge/discharge
	offtake of water at verious levels	capacity (MW) is larger we need to transport larger amounts of
	and at different time scales?	water which yields a larger diffuser. Furthermore, if it was not clear
		from the presentations, the water level inside the PTES remains
		constant at all times. Therefore, when water is pumped out, the
		same amount is pumped in."
23	Are the observation data over time	Jonas I. S.: "Yes, they are. Note that all the reports and articles use
	of the temperatures and energy	data when the former lid design was in use. Currently, there are no
	loss pubicly available ? Can you	published report with the new lid, however they will come. Please
	share a link?	have a look at the following references:
		https://www.solar-district-heating.eu/wp-
		content/uploads/2019/10/Dronninglund-evaluation-report-2015- 2017_20190531.pdf
		https://www.solar-district-heating.eu/wp-
		content/uploads/2019/10/Marstal-evaluation-report-2015-
		2017_2019.05.28.pdf
		https://www.sciencedirect.com/science/article/pii/S0038092X2200
		9252"

24	There is more wind energy in	Jonas I. S.: "Yes, that would most certainly be possible. The question
	winter. Could a smaller storage	is then about the conversion from electricity to heat. Depending on
	heat a bigger town with wind	the demand and the surrounding system either electric boilers or a
	energy not solar energy?	heat pump would be the best cases. The electric boiler has
		significantly lower CAPEX and OPEX compared to the OPEX,
		however it produces heat from electricity in approximately 1:1 ratio
		(99% efficiency) whereas the heat pump cooling the bottom of the
		storage and heating the top would have a COP of around 3.5, i.e., a
		ratio of 3.5 heat to 1 electricity."