#	Vraag	Antwoord
1	Why are abbreviations continuesly	Tank Thermal Energy storage (TTES), Large Thermal energy
	used for TTES LTES DH P2H and so	storage (LTES), District heating (DH), Power to heat (P2H),
	forth, since we are (first-time)	Combined heat and power (CHP). The abbreviations save us a
	listeners.	lot of time and space, but I do understand that they can be a bit
		tricky to capture. Our brochure will introduce many of these
		abbreviations, so I recommend you to have a look at it (a link to
		it will be shared in the upcoming days and will be available on
		the IEA-ES Task 39 website)
2	What are typical storage times for	The storage time depends on the situation but usually it is used
	TTES?	for daily storage. For example to store solor heat production
		and to delever the morning peak and evening peak load of
		district heating systems. Longer storage times such as weekly
		are being considerd in large District heating systems. Finally
		some large Tanks are used for seasonal storage but far less then
		for daily.
3	What is de investment for the TTES in	Total investment costs = 50 million Euros, specific price is higher
1	Berlin?	than TTES usually (because of extra installations). Indeed,
		auxiliary equipment and connecting pipes in Berlin made the
		investment costs higher than usual for just a tank.
4	Does the TTES work with	TTES is the most suitable large storage solution for stratification.
	stratification?	So depending on the size and power output of the tank the
		stratification can be maintained. Bigger/higher tanks can have
		good stratification.
5	How big is the heat loss for TTES in	Usually very little. For large volumes, for example >5,000m3 the
	relation to its state of charge and	losses can be less than 1% per day with storage of 90grC.
	temperature?	
6	How do you decide optimal height of	Taking into consideration required storage power and required
	the tank?	storage duration. Also look at available space. A higher/narrow
		tank is usually more costly than a broad/lower tank. But the
		benefit of higher is a better stratification. Typical range of height-
		to-diameter ratio range from 1.5 to 2.5 (so the TTES above-
		ground are usually rather narrow, 2 times higher than they are
		wide). For larger TTES, the ratio is closer to 1, because
		otherwise the water column pressure (static pressure) becomes
		too high.
7	In the cases where TTES was chosen	Usually it is chosen for the high power output and since it is for
	for district heating, why was it chosen	daily storage. PTES or ATES are usually lower power and longer
	instead of PTES or ATES?	storage duration. Also because they make no or little
		requirement for the underground conditions
8	Do you know of any cases where the	Yes, at least one of the PIES in Denmark also has a daily storage
	techniques were combined? TIES and	I IES connected as well (solar district heating)
	either PIES or AIES To get both high	
	power and long storage?	
9	How are the TIES constructed	Usually, TTES have a steel core, and is made watertight by
1	(Concrete/metal) and how is the inside	weiding (see the inside view of the TTES in Berlin)
1	lined?	

10	The 21% Solar Energy fraction you	Usually this is solar thermal panels. Yes, all solar district heating
	mentioned when loading a TTES. Is this	installations are with either flat-plate solar thermal collectors,
	with PV-panels, Thermal-panels or	or concentrated solar thermal
	High Temperature PVT?	
11	is presure underground not allowed?	Ruud will probably answer this, but it's not that it isn't allowed,
		but pressure comes from height difference. The U-TTES being
		underground, then it cannot add or maintain pressure in the
		network (this would require for the U-TTES to be pressurized,
		which would make the construction more costly)
12	What is the difference between	The TTES underground has vertical wall, reinforced for stability
	underground TTES and pit storage?	of the soil, while a PTES has soil slopes with usually no
	5 1 5	reinforcement. Also, in a PTES, the excavated soil is reused to
		build up the sides, enabling to creat more volume of water than
		the volume of soil that is excavated. This procedure saves costs
		of removing/transporting the excavated soil
13	So, the choice depends mostly on	TTES is usually for shorter storage periods and higher power
	construction and logistics concerns?	output then PTES.
		Construction and logistics can also play a part
		Finally, space constraints can play a part. TTES can be deeper
		and has straight walls. Thus more storage volume compared to
		its footprint.
14	Does the bottum have isolation?	Answered live
15	Does the Ecovat come with its own	Solely the tank.
	electric heater/heat pump or is it	
	solely the storage tank?	
16	Hello. the water in the tank comes	Answered live. For steel tanks, the water should be of District
	from what source (river, lake,) must	Heating Network quality (high PH, low content of salts) in order
	the water have a certain quality?	to avoid corrosion, both of the tank but also of the inlet/outlets
		and the heat exchangers
17	How many ecovat are build?	One. More projects in development phase.
18	what is the loss in temp % in the	Answered live
	system?	
19	Is the efficiency higher than other	The required efficiency is an input for the amout of required
	systems?	insulation. In general underground TTES are more efficient
		(assuming the same volume) then other systems due to a better
1		surface/volume ratio, insulated walls, better stratification and
		smaller roof surface (which contacts the highest temperature).
20	What are the requirements for an	The inlet water flow should be laminar, which is whi often it is
	optimal 'nozzle'for the diffusor?	done with wide-diameter metallic plates (several meters)
21	Can Ruud provide an estimaed cost for	Yes, ~150-250 €/m3
1		
	a typical non-rocky dutch soil 100k m3	